

Thoughts on cloud migration

Pete Doucette
U.S. Geological Survey
Department of the Interior

Cloud Summit NOAA / NESDIS November 21, 2019

Cloud motivations— price vs. value

Oscar Wilde, "Lady Windermere's Fan", 1891

Cecil Graham: What is a *cynic*?

Lord Darlington: A man who knows the price of

everything, and the value of nothing.

Cecil Graham: And a <u>sentimentalist</u>, my dear Darlington, is a man who sees an absurd <u>value</u> in everything and doesn't know the market <u>price</u> of any single thing."

Cloud motivations— price vs. value

1. Price (cynic)

- satisfy operational requirements
- economies of scale can save \$

2. Value (sentimentalist)

- data
 knowledge ("inference")
- speed, agility, flexibility, diversity
- unlimited scaling

United States Geological Survey

Motto: Science for a changing world.

- ~8500 employees
- 65 science centers
- 400 field offices
- National Water Model
- 1000s of streamgages and seismic monitor stations
- National Map and LIDAR
- 2 operational satellites

EarthMAP: The grand challenge

Scientists need to rethink how they interact with big data*

- storage v.
on-deman
recomput
CHARACTERIZATION
Water, Ecosystem,

moving data as in the as possibl

- Federated

*"Sciple Levis to Sethink how it interacts with big data: Five principles for effective scientific big data systems," Niall H. Robinson, Joe Hamman, and Ryan Abernathy (https://arxiv.org/pdf/1908.03356.pdf)

USGS Cloud Hosting Solutions EarthMAP Platform Simplified Conceptual Phase 1 Architecture

Lessons from USGS cloud migration

- There is no replacement for having Cloud strategy support from the head of the agency in clear terms communicated to all.
- Required staffing/funding to support a VDC should be viewed no differently than support for on-prem data center. Needed skill sets will shift accordingly.
- All things being equal, consider using tools, services, and policies
 "Born in the Cloud" to support the cloud environment.
- A fundamental decision--- Use cloud as an augmentation OR replacement platform? Each has its own set of challenges to materialize and support.

Lessons from USGS cloud migration

- More efficient when performed as many smaller migrations
 - Big lift-and-shift efforts are rarely seamless
 - Understanding dependencies is critical
 - USGS provided access to Redshift Spectrum, but underlying dependence on AWS Glue resulted in inability to use Redshift Spectrum □ Push to get appropriate tools Fedramp certified.
 - Complicates multi-vendor cloud deployments
- Addressing cultural perceptions
 - Cloud is not a fad [OMB-- Cloud First (2010) □ Cloud Smart (2018)]
 - o Concerns ☐ jobs, funding deficiency/mystery bills, security, vendor lock-in, contract changes
 - Early on-ramps for workforce is important
 - Embrace (new) DevOps mindset to some degree, what used to be infrastructure will become code.

PANGEO

A community platform for Big Data geoscience collaboration

Motivation

- *Big Data*: datasets are growing too rapidly and legacy software tools for scientific analysis can't handle them.
- *Technology Gap*: a growing gap between the technological sophistication of industry solutions (high) and scientific software (low).
- Reproducibility: a fragmentation of software tools and environments renders most geoscience research effectively unreproducible and prone to failure.

Pangeo aims to address these challenges through a unified, collaborative effort.

Funding sources:

Source: http://pangeo.io

PANGEO Deployment architecture

HPC / Cloud Compute

compute nodes

Slide 10

PANGEO

INTERCHANGEABLE PIECES IN PANGEO (PICK 1 OR MORE FROM EACH ROW)

Data Models	xarray	Iris	pandas Maria
N-D Arrays	NumPy	DASK	
Processing Mode	Interactive	Batch	Serverless
Compute Platform	нрс 🕡	aws	Google Cloud Platform
Foundation	∂ python "		

Source: http://pangeo.io/architecture.html

AI/ML (deep learning) trend □ big data

Graph adapted from: https://www.scribd.com/document/355752799/Jeff-Dean-s-Lecture-for-YC-AI

Data science goals – scenario projections

Effects of Ogallala aquifer decline near Lubbock, TX

Backup

Landsat Analysis Ready Data* (ARD)

Currently GeoTIFF bundled as .tar

Slide 15

Cloud Optimized GeoTIFF (COG)

- Customized range requests
- Make a connection from pixels on the screen to specific scenes
- Select different band combinations
- Show change time-lapse

